Jump to content

Deputy for Electrified Aircraft Propulsion Integration Joe Connolly


NASA

Recommended Posts

  • Publishers
grc-2023-c-10506-1.jpg?w=2048

“The goal is to get as many of the wrong ideas out of the way as early as possible. 

“So we’ll come up with some idea, especially on the research side, and sometimes it will seem really brilliant on the napkin or in a conversation with one other person. 

“[When I started working on electric aircraft propulsion,] I was not familiar with all of the electrical ins and outs. I thought power would just be available, and I could use it when I wanted it. [Our concepts had] all these little hiccups — how they get integrated in the real system, how the battery systems are going to interplay, and all the extra safety things that we need to consider—they allowed us to figure out things a little bit earlier and [give us] a broader perspective.

“The key thing is that when you’re working on something that’s really hard, I think the whole expectation is that you’re going to fail. So we try to fail as many times as we can early on. So when we’re getting closer to an actual demonstration, we’re pretty confident that at that point, we’ve talked to the right people, everyone’s on board, and we’re going to have a safe, larger test campaign.

“It’s always better to fail earlier on and learn as much as you can.”

— Joe Connolly, Deputy for Electrified Aircraft Propulsion Integration, Glenn Research Center

Image Credit: NASA / Jef Janis
Interviewer: NASA / Thalia Patrinos

Check out some of our other Faces of NASA.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Note: The following article is part of a series highlighting propulsion testing at NASA’s Stennis Space Center. To access the entire series, please visit: https://www.nasa.gov/feature/propulsion-powering-space-dreams/.
      Crews at NASA’s Stennis Space Center work Jan. 21-22, 2020, to install the first flight core stage of NASA’s powerful SLS (Space Launch System) rocket on the B-2 side of the Thad Cochran Test Stand for a Green Run test series. Operations required crews to lift the massive core stage from a horizontal position into a vertical orientation, a procedure known as “break over.” Once the stage was oriented in a horizontal position on the night of Jan. 21, crews tied it in place to await favorable wind conditions. The following morning, crews began the process of raising, positioning, and securing the stage on the stand. NASA/Stennis The future is now at NASA’s Stennis Space Center near Bay St. Louis, Mississippi – at least when it comes to helping power the next great era of human space exploration.  
      NASA Stennis is contributing directly to the agency’s effort to land the first woman, the first person of color, and its first international partner astronaut on the Moon – for the benefit of all humanity. Work at the nation’s largest – and premier – propulsion test site will help power SLS (Space Launch System) rockets on future Artemis missions to enable long-term lunar exploration and prepare for the next giant leap of sending the first astronauts to Mars.  
      “We play a critical role to ensure the safety of astronauts on future Artemis missions,” NASA Stennis Space Center Director John Bailey said. “Our dedicated workforce is excited and proud to be part of NASA’s return to the Moon.”  
      NASA Stennis achieved an RS-25 testing milestone in April at the Fred Haise Test Stand. Completion of the successful RS-25 certification series provided critical data for L3Harris (formerly known as Aerojet Rocketdyne) to produce new RS-25 engines, using modern processes and manufacturing techniques. The engines will help power SLS rockets beginning with Artemis V.   
      The first four Artemis missions are using modified space shuttle main engines also tested at NASA Stennis. For each Artemis mission, four RS-25 engines, along with a pair of solid rocket boosters, power the SLS rocket to produce more than 8.8 million pounds of total combined thrust at liftoff.   
      NASA’s powerful SLS rocket is the only rocket that can send the Orion spacecraft, astronauts, and cargo to the Moon on a single mission.   
      Following key test infrastructure upgrades near the Fred Haise Test Stand, NASA Stennis will be ready for more RS-25 engine testing. NASA has awarded L3Harris contracts to provide 24 new engines, supporting SLS launches for Artemis V through Artemis IX.  
      “Every RS-25 engine that launches Artemis to space will be tested at NASA Stennis,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate. “We take pride in helping to power this nation’s human space exploration program. We also take great care in testing these engines because they are launching astronauts to space. We always have safety in mind.” 
      NASA’s Stennis Space Center conducts a successful hot fire of the first flight core stage of NASA’s powerful SLS (Space Launch System) rocket on the B-2 side of the Thad Cochran Test Stand on March 18, 2021. NASA employees, as well as NASA astronauts Jessica Meir and Zena Cardman, watched the milestone moment. The hot fire of more than eight minutes marked the culmination of a Green Run series of tests on the stage and its integrated systems.  NASA/Stennis In addition to RS-25 testing, preparations are ongoing at the Thad Cochran Test Stand (B-2) for future testing of the agency’s new exploration upper stage. The more powerful SLS second stage, which will send astronauts and cargo to deep space aboard the Orion spacecraft, is being built at NASA’s Michoud Assembly Facility in New Orleans.   
      Before its first flight, the NASA Stennis test team will conduct a series of Green Run tests on the new stage’s integrated systems to demonstrate it is ready to fly. Crews completed installation of a key component for testing the upper stage in October. The lift and installation of the 103-ton interstage simulator component, measuring 31 feet in diameter and 33 feet tall, provided crews best practices for moving and handling the actual flight hardware when it arrives to NASA Stennis.   
      The exploration upper stage Green Run test series will culminate with a hot fire of the stage’s four RL10 engines, made by L3Harris, the lead SLS engines contractor.  
      “All of Mississippi shares in our return to the Moon with the next great era of human space exploration going through NASA Stennis,” Bailey said. “Together, we can be proud of the state’s contributions to NASA’s great mission.”   
      For information about NASA’s Stennis Space Center, visit:  
      Stennis Space Center – NASA  
      Share
      Details
      Last Updated Nov 13, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      5 min read NASA Stennis – An Ideal Place for Commercial Companies
      Article 13 mins ago 5 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise
      Article 14 mins ago 5 min read NASA Stennis Adapts with Purpose to Power Nation’s Space Dreams
      Article 14 mins ago Keep Exploring Discover Related Stennis Topics
      Propulsion Test Engineering
      NASA Stennis Front Door
      Multi-User Test Complex
      Doing Business with NASA Stennis
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist’s concept of a future airliner based on the NASA Advanced Aircraft Concepts for Environmental Sustainability 2050 submission from awardee Electra. The team’s project focuses on electric propulsion, integrated aircraft technologies, and vehicle design.Electra Picture yourself at an airport a few decades from now. What does your airliner look like? It’s more efficient, with lower emissions than today’s aircraft – what kinds of designs or technology make that possible? NASA is working to answer those questions by commissioning five new design studies looking to push the boundaries of possibility for sustainable aircraft. 
      Through NASA’s Advanced Aircraft Concepts for Environmental Sustainability (AACES) 2050 initiative, the agency asked industry and academia to come up with studies looking at aircraft concepts, key technologies, and designs that could offer the transformative solutions needed to secure commercial aviation’s sustainable future by 2050. NASA issued five awards, worth a total of $11.5 million, to four companies and one university. These new NASA-funded studies will help the agency identify and select promising aircraft concepts and technologies for further investigations. 
      Artist’s concept of a future airliner based on the NASA Advanced Aircraft Concepts for Environmental Sustainability 2050 submission from awardee Georgia Institute of Technology. The team’s project focuses on exploring scenarios and technologies based on an aircraft concept the institute has developed, known as ATH2ENA.Georgia Institute of Technology “Through initiatives like AACES, NASA is positioned to harness a broad set of perspectives about how to further increase aircraft efficiency, reduce aviation’s environmental impact and enhance U.S. technological competitiveness in the 2040s, 2050s, and beyond,” said Bob Pearce, NASA associate administrator for the Aeronautics Research Mission Directorate. “As a leader in U.S. sustainable aviation research and development, these awards are one example of how we bring together the best ideas and most innovative concepts from the private sector, academia, research agencies, and other stakeholders to pioneer the future of aviation.” 
      For decades, NASA has connected government agencies, industry, and academia to develop sustainable aviation technologies. In 2021, NASA launched its Sustainable Flight National Partnership, focused on technologies that could be incorporated into aircraft by the 2030s. The partnership’s research and development led to current NASA work including the experimental X-66 Sustainable Flight Demonstrator aircraft, its Electrified Powertrain Flight Demonstration project, and the development of more efficient engine cores and processes for the rapid manufacturing of lightweight composite materials. 
      Artist’s concept of a Pratt & Whitney advanced propulsion concept for the NASA Advanced Aircraft Concepts for Environmental Sustainability 2050 initiative. The Pratt & Whitney project focuses on commercial aviation propulsion technologies targeting thermal and propulsive efficiency improvements to reduce fuel consumption and greenhouse gas emissions.Pratt & Whitney The new AACES awards are initiating a similar process, but on a longer timeline, focusing on technologies to help transform aviation beyond SFNP with aircraft that could enter service by 2050. The kinds of partnerships NASA develops through SFNP and AACES are critical for the agency to support the U.S. goal of net-zero aviation emissions by 2050 and to help put aviation on a path toward energy-resilience. 
      “The AACES 2050 solicitation drew significant interest from the aviation community and as a result the award process was highly competitive,” said Nateri Madavan, director for NASA’s Advanced Air Vehicles Program. “The proposals selected come from a diverse set of organizations that will provide exciting and wide-ranging explorations of the scenarios, technologies, and aircraft concepts that will advance aviation towards its transformative sustainability goals.” 
      An artist’s concept of JetZero’s blended wing body, which the company’s team will use to evaluate technologies for the NASA Advanced Aircraft Concepts for Environmental Sustainability 2050 initiative. JetZero’s project will explore technologies that enable cryogenic, liquid hydrogen to be used as a fuel for commercial aviation to reduce greenhouse gas emissions.JetZero The AACES 2050 awards went to organizations that will form networks of university and corporate partners to advance their studies. NASA expects the awardees to complete their studies by mid-2026. The new awardee institutions are: 
      Aurora Flight Sciences, a Boeing Company, whose team will perform a comprehensive, “open-aperture” exploration of technologies and aircraft concepts for the 2050 timeframe. This will include examining new alternative aviation fuels, propulsion systems, aerodynamic technologies, and aircraft configurations along with other technology areas that arise throughout the study.  The Electra-led team will explore extending Electra’s novel distributed electric propulsion and its unique aerodynamic design capabilities to develop innovative wing and fuselage integrations that deliver sustainable aviation focused on enabling community-friendly emission reduction, noise reduction, and improved air travel access. The company’s existing small aircraft prototype has been flying for over a year, demonstrating Electra’s technology that aims to transform air travel with reduced environmental impact and improved operational efficiency.  Georgia Institute of Technology will perform a comprehensive exploration of sustainability technologies, including alternative fuels, propulsion systems, and aircraft configurations. The institute’s team will then explore new aircraft concepts incorporating the selected technologies with their Advanced Technology Hydrogen Electric Novel Aircraft (ATH2ENA) as a starting point.   JetZero will explore technologies that enable cryogenic, liquid hydrogen to be used as a fuel for commercial aviation to reduce greenhouse gas emissions. These technologies will be evaluated on both tube-and wing and JetZero’s blended wing body – an airplane shape that provides more options for larger hydrogen fuel tanks within the aircraft.  Pratt and Whitney a division of RTX Corporation, will explore a broad suite of commercial aviation propulsion technologies targeting thermal and propulsive efficiency improvements to reduce fuel consumption and greenhouse gas emissions. The Pratt & Whitney team will then down-select high-priority and alternative propulsion concepts for potential integration studies with various airframe concepts for aircraft in 2050 and beyond.  Artist’s concept of a 50-60 passenger hydrogen fuel cell electric plane created by Boeing through its future flight concept efforts. Aurora Flight Sciences, a Boeing Company, received an award through NASA’s Advanced Aircraft Concepts for Environmental Sustainability (AACES) 2050 initiative to examine new alternative aviation fuels propulsion systems, aerodynamic technologies, and aircraft configurations, along with other technology areas.Boeing AACES 2050 is part of NASA’s Advanced Air Transport Technology project, which explores and develops technology to further NASA’s vision for the future development of fixed-wing transport aircraft with revolutionary energy efficiency. The project falls under NASA’s Advanced Air Vehicles Program, which evaluates and develops technologies for new aircraft systems and explores promising air travel concepts. 
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      5 min read Math, Mentorship, Motherhood: Behind the Scenes with NASA Engineers
      Article 4 days ago 4 min read X-59 Fires Up its Engine for First Time on its Way to Takeoff
      Article 6 days ago 5 min read October Transformer of the Month: Nipa Phojanamongkolkij
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans In Space
      Quesst: The Vehicle
      Explore NASA’s History
      Share
      Details
      Last Updated Nov 12, 2024 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
      Aeronautics Research Mission Directorate Advanced Air Transport Technology Advanced Air Vehicles Program Sustainable Flight Demonstrator Sustainable Flight National Partnership View the full article
    • By NASA
      NASA HLS (Human Landing System) Program strategic communicator and U.S. Navy Reservist Public Affairs Officer Joe Vermette brings a wealth of public service to Artemis communication activities. NASA/Ken Hall Coming from a Navy family, Vermette was inspired to military service by the example of his brother, uncles and father, who admired President John Kennedy’s call to land on the Moon and for citizens to do what they can for our country. Photo courtesy Joe Vermette While some stand on the sidelines and witness history, others are destined to play a part in it. And then there are those who document it, bringing the people, the action, the images, the words, and the personalities to the world. U. S. Navy Reservist Public Affairs Officer and program strategic communicator for NASA’s HLS (Human Landing System) Joe Vermette stands at the nexus of all three.
      Spurred to action to serve his country by the events of September 11, 2001; veteran of numerous overseas deployments with the Navy, and responsible for communicating NASA’s return to the Moon through the Artemis campaign, Vermette has played a part in history while he communicates humanity’s greatest endeavors to the world.
      Vermette joined NASA in August 2020 during the COVID-19 pandemic, coming from the Federal Emergency Management Agency (FEMA), where he was a regional communications director. Right off the bat, he rose to the challenge of learning about space exploration, Artemis, and communicating the new way the HLS Program would work with commercial providers for Moon landing services,  rather than specifying spacecraft to be built.
      “I was used to being right in the middle of the action,” Vermette said. “The pandemic challenged me to work in a new way. At the same time, NASA and HLS were working in a new way, having just brought on our first commercial provider, SpaceX,” he said. In May 2023, the HLS Program brought on a second commercial provider, Blue Origin, for human landing services.
      After earning a degree in military history with a minor in communications from Florida State University, Vermette worked as a video journalist and spot writer for CNN. But it was the terrorist attacks of September 11, 2001, that really shaped his career in government service. “Three weeks later, I went down to the recruiting office and began the process of joining the military. I saw an opportunity to help the country in the best capacity I could,” Vermette said.
      Since then, his career has been dotted by active deployments, from the Middle East to Europe to stateside; onboard Navy ships, at U.S. Central Command, at U. S. Special Operations Command, and more.
      NASA’s HLS Program and Artemis have benefitted from Vermette’s experience and steady hand helping guide strategic communications since 2020. He recently answered the call to active duty again but intends to return to NASA once his military obligations are fulfilled.
      “NASA is a different world than the military or disaster response. But I’ve been fortunate enough to see – and communicate about – government success stories in all three arenas, Vermette said. “Seeing NASA put astronauts on the Moon again will be the best ‘mission complete’ I could have.”
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on HLS, visit: 
      https://www.nasa.gov/humans-in-space/human-landing-system
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s C-130 Hercules is prepared for departure from NASA’s Wallops Flight Facility in Virginia, on October 15, 2024, for a cargo transport mission to India. The C-130 is supporting the NASA-ISRO Synthetic Aperture Radar (NISAR) mission.NASA/Madison Griffin NASA’s globetrotting C-130 Hercules team is carrying out a cargo transport mission to Bengaluru, India, in support of the NASA-ISRO Synthetic Aperture Radar (NISAR) mission.
      The C-130 departed from NASA’s Wallops Flight Facility in Virginia, Tuesday, Oct. 15, to embark on the multi-leg, multi-day journey. The flight path will take the aircraft coast to coast within the United States, across the Pacific Ocean with planned island stops, and finally to its destination in India. The goal: safely deliver NISAR’s radar antennae reflector, one of NASA’s contributions to the mission, for integration on the spacecraft. NISAR is a joint mission between NASA and ISRO (Indian Space Research Organisation).
      The cargo transport mission will encompass approximately 24,500 nautical miles and nearly 80 hours of flight time for the C-130 and crew. The flight plan includes strategic stops and rest days to service the aircraft and reduce crew fatigue from long-haul segments of the flight and multiple time zone changes.
      The flight crew inspects the aircraft prior to departure from NASA Wallops.NASA/Madison Griffin The C-130’s cargo compartment has plenty of space to hold the more than 2,800-pound payload containing the radar antennae reflector once retrieved from California.NASA/Madison Griffin The first stop for the C-130 was March Air Reserve Base located in Riverside County, California, to retrieve the radar antennae reflector from NASA’s Jet Propulsion Laboratory in Southern California. Additional stops during the mission include Hickman Air Force Base, Hawaii; Andersen Air Force Base, Guam; Clark Air Base, Philippines; and Hindustan Aeronautics Limited Airport in Bengaluru, India.
      This is the C-130 and crew’s third cargo transport to India in support of the NISAR mission, with prior flights in July 2023 and March 2024.
      For more information, visit nasa.gov/wallops.
      By Olivia Littleton
      NASA’s Wallops Flight Facility, Wallops Island, Va.
      Share
      Details
      Last Updated Oct 17, 2024 EditorOlivia F. LittletonContactOlivia F. Littletonolivia.f.littleton@nasa.gov Related Terms
      Aeronautics NASA Aircraft Wallops Flight Facility View the full article
    • By NASA
      A salute is widely recognized as a display of respect, but did you know it also means ‘hello’ in American Sign Language?

      It is one of the signs that Jesse Bazley, International Space Station/Commercial Low Earth Orbit Development Program integration team lead, subtly incorporates into his daily interactions with colleagues at NASA’s Johnson Space Center in Houston.

      In May 2021, Jesse Bazley worked his final shift as an Environmental and Thermal Operating Systems flight controller in the Mission Control Center at NASA’s Johnson Space Center in Houston. Image courtesy of Jesse Bazley Bazley is hard of hearing, which has at times presented challenges in his daily work – particularly during his stint as an Environmental and Thermal Operating Systems flight controller for the space station. “Working on console [in the Mission Control Center], you must listen to dozens of voice loops at a time, sometimes in different languages,” he said, adding that the standard-issue headset for flight controllers was not compatible with his hearing aids. Bazley adapted by obtaining a headset that fit over his hearing aids, learning how to adjust the audio system’s volume, and limiting over-the-air discussions when possible.

      Bazley has been part of the NASA team for 17 years, filling a variety of roles that support the International Space Station. One of his proudest achievements occurred early in his tenure. Bazley was an intern at Marshall Space Flight Center in Huntsville, Alabama, in 2006 when the space station’s Water Recovery System was being tested. The system converts the station’s wastewater into drinkable water for the crew. When he arrived at Johnson one year later, his first assignment was to assist with the system’s procedure and display development for its incorporation into the space station’s core operations. “Now, 16 years later, it is commonplace for the space station to ‘turn yesterday’s coffee into tomorrow’s coffee’,” he said.

      Jesse Bazley supporting the Atmosphere and Consumables Engineer console during the STS-127 mission in July 2009. NASA His favorite project so far has been integrating the station’s Thermal Amine Scrubber – which removes carbon dioxide from the air – into station operations. “I worked it from the beginning of NASA’s involvement, helping the provider with software testing and the integration of a brand-new Mission Control Center communications architecture,” he said.

      Today, Bazley works to integrate subject matter experts from Johnson’s Flight Operations Directorate (FOD) into the processes of the International Space Station and Commercial Low Earth Orbit Development Programs. “I help pull together FOD positions on topics and coordinate reviews of provider materials to ensure that the operations perspective is maintained as development moves forward,” he explained.

      While Bazley no longer supports a console, he must continue adapting to difficult hearing environments. He uses the captioning tools available through videoconferencing software during frequent team meetings, for example. “It’s important to understand that people have visible and invisible disabilities,” he said. “Sometimes their request for a remote option is not because they want to avoid an in-person meeting. It may be that they work best using the features available in that virtual environment.”

      Bazley also chairs the No Boundaries Employee Resource Group, which promotes the development, inclusion, and innovation of Johnson’s workforce with a focus on employees with disabilities and employees who are caregivers of family members with disabilities.

      From these diverse roles and experiences, Bazley has learned to listen to his gut instincts. “In flight operations, you must work with short timelines when things happen in-orbit, so you have to trust your training,” he said. “Understanding when you have enough information to proceed is critical to getting things done.”

      Bazley looks forward to the further commercialization of low Earth orbit so NASA can focus resources on journeying to the Moon and Mars. “Aviation started out as government-funded and now is commonplace for the public. I look forward to seeing how that evolution progresses in low Earth orbit.”

      His advice to the Artemis Generation is to consider the long-term impact of their actions and decisions. “What looks great on paper may not be a great solution when you have to send 10 commands just to do one task, or when the crew has to put their hand deep into the spacecraft to actuate a manual override,” he said. “The decisions you make today will be felt by operations in the future.”
      View the full article
  • Check out these Videos

×
×
  • Create New...